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Nematic elastomers do not show the discontinuous, first-order, phase transition that the Landau-De Gennes
mean field theory predicts for a quadrupolar ordering in three dimensions. We attribute this behavior to the
presence of network crosslinks, which act as sources of quenched orientational disorder. We show that the
addition of weak random anisotropy results in a singular renormalization of the Landau-De Gennes expression,
adding an energy term proportional to the inverse quartic power of order parameter Q. This reduces the
first-order discontinuity in Q. For sufficiently high disorder strength the jump disappears altogether and the
phase transition becomes continuous, in some ways resembling the supercritical transitions in external field.

DOI: 10.1103/PhysRevE.74.051707 PACS number�s�: 61.30.Dk, 75.10.Nr, 61.41.�e

I. INTRODUCTION

Although there is a large volume of literature devoted to
the effects of quenched disorder, there has been relatively
little study on how it influences the behavior of systems
whose pure versions undergo a first-order phase transition.
This question was first addressed by Imry and Wortis �1�
who showed that inhomogeneities may cause local variations
of the transition temperature inside the sample. Provided that
the cost in interface energy is not great, bubbles of the
“wrong” phase are formed, eventually leading to a substan-
tial rounding of the transition. A theorem due to Aizenman
and Wehr �2� shows that in less than two dimensions there
can be no phase coexistence at the transition, and therefore
no latent heat, in a system with quenched random impurities.
Therefore these systems are expected to always exhibit a
continuous transition.

The influence of quenched impurities coupling to the local
energy density has been extensively studied by Cardy �3,4�.
A mapping to the random field Ising model, whose renormal-
ization group flows are well known, addresses the question
of what happens in higher than two dimensions where the
Aizenman-Wehr theorem is not applicable. It was found that,
depending on the specific values of parameters such as the
laten heat and the surface tension, the phase transition can
either be first or second order. More conclusive analytic re-
sults were obtained in an Ising model with discrete order
parameter �3�. The pure system exhibits a fluctuation-driven
first order transition, where the mean field theory predicts a
continuous transition but fluctuation effects make it discon-
tinuous. Quenched randomness eventually drives the transi-
tion to become continuous in two dimensions, in accordance
with the Aizenman-Wehr theorem, but this may or may not
happen in higher dimensions.

The majority of studies in this field are carried out for
spin-glass or analogous systems, e.g., with a frustrated dipo-
lar ordering �5,6�. However, in such systems the experimen-
tal work is difficult and results are often indirect. In contrast,
the quadrupolar orientational ordering of nematic liquid crys-
tals offers the easy experimental access to thermodynamic
and structural features of phase transitions. The classical
work on frustrated nematic liquids by Bellini et al. �7,8� has
generated a large interest in studies of liquid crystals in ran-

dom environments, such as porous silica gel. One must ap-
preciate, however, that the characteristic length scale of such
disorder is much greater than the coherence length of the
nematic order parameter and thus the theoretical concept of a
continuous coarse-grained random field �9� is difficult to sus-
tain.

Quenched disorder is intrinsically present in nematic elas-
tomers as a direct result of their synthesis �10,11�. Sources of
disorder are introduced by crosslinking a liquid-crystalline
polymer melt. In the simplest situation, the crosslinking
takes place in the isotropic phase, in which case the local
anisotropy axis of each crosslinking moiety is randomly ori-
ented. Once the polymer network is formed, the configura-
tion of the crosslinks remains quenched, that is, it does not
change with time and temperature. Unless special precau-
tions are taken during network fabrication, the low tempera-
ture �ordered� phase of nematic elastomers is always an equi-
librium polydomain director texture �12,13�. This is in
marked contrast with a kinetic “polydomain” texture often
referred to as Schlieren texture �14�, which is the conse-
quence of nucleation and growth mismatch in a system un-
dergoing the first-order transition �15�. The equilibrium poly-
domain structure of nematic elastomers is reversible with
changing temperature and is characterized by the uniform
nonzero order parameter, but the highly nonuniform orienta-
tion of the principal axis of nematic director n. Correlations
between directors decay rapidly and eventually vanish at dis-
tances much larger than �, the correlation length or domain
size. This is in agreement with the general result that
quenched impurities destroy long-range order, first shown by
Larkin �16� and then generalized by Imry and Ma �9�. There
is a full analogy with a corresponding dipolar system named
“random anisotropy magnets” �17–19�. In fact, all other �e.g.,
smectic �20�� liquid crystal elastomers follow the same pat-
tern of forming the equilibrium textures with a characteristic
length scale often referred to as the domain size.

This length scale in typical nematic elastomers is of the
order of microns �12,13�, therefore light passing through the
sample is multiply scattered on birefringent domains with
randomly oriented optical axis �21� �see �10� for a brief re-
view of experimental facts in this area�. As a result such a
sample is completely transparent at high temperatures, but
becomes opaque below its nematic-to-isotropic transition
temperature TNI. The polydomain texture is the thermody-
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namically stable low-temperature phase. Applying an ad-
equately strong aligning stress �12� or increasing the tem-
perature above TNI �13� destroys the polydomain texture, by
aligning the local axis of each domain, or removing the op-
tical contrast between them. However, once the stress is re-
moved �or the temperature lowered�, the elastomer returns to
its previous state and the average domain size is found to be
reversible during this stress �or temperature� cycling.

Experimental investigations in nematic elastomers sup-
port the theoretical ideas of a continuous nematic-isotropic
transition, rather than the discontinuous first-order transition
expected by the Landau-De Gennes mean field theory based
on the symmetry of quadrupolar ordering in three dimen-
sions. The fact that polydomain nematic textures are opti-
cally opaque creates a practical problem when attempting to
experimentally determine the local order parameter Q of the
mesogenic units. It is impossible to use birefringence, di-
chroism or x-ray measurements, the methods that have made
this task simple in aligned liquid-crystal systems. Nuclear
magnetic resonance �NMR� provides perhaps the only oppor-
tunity of order detection, by tracking the bias in orientational
motion of selected chemical bonds and providing a unique Q
signature even in the orientationally averaged case. It was
used to measure Q�T� of both a nematic polymer melt and its
corresponding crosslinked network �22,23�. The addition of
crosslinks was shown to make the nematic transition smooth,
as well as to slightly reduce order. An indirect alternative to
NMR comes from applying an external field to align the
domains. Birefringence can then be measured, as long as the
system has passed the critical point of the polydomain-
monodomain transition �19�. The order parameter can thus
be found for a series of decreasing applied fields. Although
the zero-stress limit is not accessible, it can be extrapolated
from the comparison of the other curves and, again, a con-
tinuous phase transition is seen �24�.

The continuous transition is also found in carefully syn-
thesized monodomain nematic elastomers, where a second
stage of the crosslinking takes place when the sample is
stressed �25�. Plots of the macroscopic order parameter Q�T�,
obtained through birefringence �26�, x-ray scattering �27�,
and NMR measurements �23�, show the same behavior.
There are two possible explanations for such a deviation
from the basic symmetry-based expectation of a first-order
transition. Inhomogeneities may cause local variations of the
transition temperature inside the sample and lead to a sub-
stantial rounding of the transition, as discussed in �1�. The
other explanation considers stresses imprinted in the system
during the second crosslinking stage, which add a −fQ term
to the Landau-De Gennes expansion. Obviously, for ad-
equately large f , the system would become supercritical and
show a continuous transition. The analysis of the NMR spec-
tra supports the supercritical scenario, although some degree
of inhomogeneity was also found using the second moment
of the spectra �23�. Another study of strain as a function of
temperature over a range of applied tensile stress argues the
opposite point �28�. The blurring of the isotropic-nematic
transition is attributed to the presence of heterogeneities, al-
though the authors do not consider boundary effects that are
bound to be present as discussed in �1�.

Uchida �29� has studied disordered polydomain nematic
elastomers with emphasis on the role of nonlocal elastic in-

teractions. He has shown that networks crosslinked in the
isotropic phase lose their long-range orientational order due
to the locally quenched random stresses, which were incor-
porated into the affine-deformation model of nematic rubber
elasticity. Simulation work was carried out to investigate the
role of random bonds and random fields that might be
present in elastomers �30�, in both cases finding the first-
order isotropic-nematic transition to broaden into a smooth
crossover. For random-field disorder, the smooth crossover
into an ordered state is also attributed to the long-range elas-
tic interaction present in elastomers. A recent coarse-grained
model for liquid-crystalline elastomers has also found that
both homogeneous and inhomogeneous samples undergo a
continuous isotropic-nematic transition �31�.

In this paper we apply the traditional spin-glass tech-
niques to investigate the characteristics of nematic phase
transition in a system with quenched random anisotropy. The
structure of the paper is as follows. In Sec. II we summarize
a physical model of quenched disorder in nematic systems
following �19�, and introduce the replica Hamiltonian. Sec.
III applies the auxiliary fields to incorporate several con-
straints into this problem and obtains the effective mean-field
free energy of disorder in the system. In Sec. IV we investi-
gate the stability of replica symmetry and discover the limits
where our solutions are valid. Finally, in Sec. V we obtain
the final free energy renormalization in terms of the order
parameter Q and disorder strength, and investigate the char-
acteristics of the nematic phase transition in various situa-
tions. We conclude by discussing our results and comparing
them with experiments.

II. MODEL

A. Sources of quenched disorder

In the case of nematic elastomers crosslinked in the iso-
tropic phase, the sources of quenched disorder are provided
by the network crosslinks. Almost independent of their spe-
cific chemical structure, the crosslinks contain anisotropic
groups that locally provide easy anisotropy axes k: it is fa-
vorable for the local director to align along k in the vicinity
of the crosslink because the anisotropic molecules in both the
crosslinkers and in the nematic system interact, both steri-
cally and via the long-range van de Waals attraction. The
local anisotropy axes of the crosslinks, as well as their dis-
tribution inside the sample, are quenched variables since the
crosslinks can neither rotate nor move once the chemical
synthesis of the elastomer is complete. Although this has
never been tested experimentally, there are two independent
molecular models that estimate the energy of orientational
confinement that a crosslink experiences from the surround-
ing network strands �32,33�, Fig. 1

We follow earlier work �10� in modeling the local cou-
pling of the nematic order and the random field applied by
the crosslinks. For a crosslink positioned at Ri, with an an-
isotropy axis ki, an energy −�ki ·Q= ·ki is raised due to the
interaction with the local nematic order parameter Qij
=Q�ninj −�ij /3�, where � is the coupling strength. Employ-
ing a coarse-grained expression for the continuum density of
crosslinks ��r�=�Ri

��r−Ri� and substituting the full tensor
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expression for Q
=

, we get the random field energy:

Fr.f. = −� d3r�Q��r��k · n�2, �1�

where the irrelevant constant ����r� has been dropped. Al-
though the random field energy is proposed specifically for a
nematic elastomer, it is a general expression which is valid
for all random-anisotropy systems with underlying quadru-
polar symmetry.

To obtain the full Hamiltonian describing the nematic or-
dering, the gradient elasticity penalizing the fluctuations of
the director field must also be taken into account. In con-
tinuum elasticity the Hamiltonian takes the form:

H��,k� =� d3r�K

2
��n�2 − �Q��k · n�2	 , �2�

where K is the Frank elastic constant in the one-constant
approximation. A simple dimensional argument gives K

kBT /a, where a is the nematic coherence length, below
which the meanings of the director n and order parameter Q
are ill-defined �14�. Both microscopic and phenomenological
theories of nematic-isotropic transition give the elastic con-
stant K to scale as Q2 for Q�1. Combining these two esti-
mates, we take that for small Q the elastic constant is ap-
proximately given by K�kBTQ2 /a. It is important to clarify
that we are examining a homogeneous sample and as a result
the magnitude of Q and the TNI are uniform across the
sample. There is rich literature on the role inhomogeneities
play in general first-order systems �1� and more specifically
in nematic elastomers �28–30,34�. The important difference
in our assumptions is that, although the director correlations
in the polydomain nematic are short range �equilibrium spin-
glass texture�, the underlying nematic order parameter Q is
homogeneous across the system. This assumption is based on
the fact that the spin-glass-like nematic textures are in fact
homogeneous, in the sense that every element of the sample
is equivalent to others: no “domain walls” �unlike, for in-

stance, during the stress-induced polymonodomain transition
�10� when the domain walls localize�.

B. The replica method

There are three established methods of dealing with
quenched random fields in the replica method framework:
one based on the functional renormalization group analysis,
another using the Gaussian variational method, and the third
using auxiliary fields. This paper employs the latter.

We are interested in results that do not depend on the
specific distributions of ��r� and k because we cannot control
these distributions experimentally. In other words we are
looking for the free energy averaged over the random distri-
butions of the quenched variables ��r� and k. Crosslinking
the sample above TNI makes the easy anisotropy axes point at
random directions, with an isotropic probability of orienta-
tion P�k�= 1

4� . Furthermore, the crosslinks are dispersed ran-
domly in the sample with density �. The probability that a
particular distribution ��r� occurs is Gaussian:

P���r�� 
 exp�−� d3r
���r� − �0�2

2�0
	 , �3�

where �0 is the mean density of crosslinks.
It is not possible to directly average the logarithm of the

partition function Z and obtain the exact free energy. So an
alternative definition of a logarithm �the limit: log Z
=�mZm�m→0� is used, allowing one to perform the simpler
average of the product Zm. This way of dealing with
quenched disorder is called the “replica trick,” first intro-
duced in the context of spin glasses by Edwards and Ander-
son �35�. The expression for the free energy arising from
disorder then reads:

Fd = − kBTlog Z��,k

= � − kBT
�

�m
Zm��

m→0

= − kBT� �

�m
�

m→0
�
a=1

m � Dnaexp�− �Hrep� , �4�

where we now have m identical“replicas” of the system, la-
beled by the index a. The aim of this work is to obtain Fd as
a function of the order parameter Q and add it to the
Landau-De Gennes free energy to see how it influences the
phase transition.

A rough sketch of the averaging over disorder is given
below. The density average over P��� yields a random field
term


exp��
a,b

���Q�2�0�ka · na�2�kb · nb�2	 ,

where �here and throughout this paper� �=1/kBT. The read-
er’s attention is drawn to the appearance of a second replica
index b due to the square of the �a. Since the distribution of
the orientations of the easy axes P�k� is assumed fully
isotropic, symmetry arguments show that the average
kikjklkm�P�k� is proportional to ��ij�lm+�il� jm+�im� jl�. The

FIG. 1. �Color online� Schematic representation of how
crosslinks provide easy anisotropy axes �k�. The nematic director is
forced to be aligned, in the vicinity of the crosslink, with the axes,
which are represented by the arrows. Both the orientation of �k� as
well as the positions of the crosslinks �Ri� are random. Since the
crosslinks are confined by the network topology, they add quenched
disorder to the nematic system.
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constant of proportionality is equal to 1/ �2d+d2�, where d is
the dimensionality of the unit vector k. Therefore

ekikjklkmninjnlnm
�P�k� = 1 + kikjklkm�ninjnlnm + ¯

� ekikjklkm�ninjnlnm
. �5�

Since �na ·nb��1 higher terms of the Taylor expansion are
smaller than the lowest order term (�na ·nb�2) and are subse-
quently dropped in the last line of Eq. �5�. This approximate
treatment retains a random field term which is overall fourth
order in n, as it was before the k averaging, and it is most
frequently met, and used, in molecular theories involving
rotational diffusion.

The third line of Eq. �4� is obtained after averaging over
quenched disorder, sketched above, and provides the defini-
tion of the “replica Hamiltonian,” which no longer depends
on the quenched distributions of �k� and ��r�, but instead
couples different replicas of the system:

Hrep�n�r�� � �
a,b=1

m � d3r�K

2
��na�2�ab −

	

2
�2�na · nb�2

+ �na · na��nb · nb��� , �6�

where subscripts a and b are the replica indexes and m is the
number of replicas that will be set to zero at the end of the
calculation. Parameter 	, arising from completing the Gauss-
ian square between the Eq. �3� and the random-field term in
the Eq. �2�, reflects the strength of the disorder and has a
quadratic dependance on the order parameter:

	 =
�2�0

15kBT
Q2. �7�

It is noted that all replicas are assumed to have equal disor-
der strength and equal magnitude of the local order param-
eter, i.e., �a=�b and Qa=Qb for all a and b. Bearing in mind
that the director is a unit vector we see that the term with
�na ·na��nb ·nb� in the random field part of the replica Hamil-
tonian just adds an irrelevant constant to the expression. We
drop this term and keep the relevant contribution −	�na ·nb�2

that describes the coupling between different replicas.

III. DISORDER FREE ENERGY

A. Auxiliary fields

Care must be taken to ensure that the director n�r� re-
mains a unit vector. Although this was assumed to be the
case, it has not been implemented explicitly in Eq. �6�. One
way to achieve this multiplies the partition function in Eq.
�4� with the delta-function constraint

��n2 − 1� =
1

2�
�

−





d�e−i��n2−1�, �8�

where � is an auxiliary field that allows the delta-function to
be written in its exponential form. We proceed with a mean-
field treatment of the auxiliary fields where a constant value

for � is assumed, independent of spacial coordinates. This
approximation implies that the constraint n2=1 is equally
enforced across the whole sample. It is reasonable to expect
this, given that the sample is spatially homogeneous. The
same reasoning explains why � has no dependance on the
replica indexes: since its value is independent of the position
of the crosslinks in the sample, it cannot have different val-
ues for different replicas. The corresponding quadratic term
�ai��na

2−1� has to be added to the replica Hamiltonian in
Eq. �6�.

To obtain the disorder energy one must evaluate the sta-
tistical sum over all possible trajectories na. The standard
way to evaluate Hamiltonians with quartic interactions is to
introduce an auxiliary field, here a tensor �ab, which reduces
the Hamiltonian to bilinear order in na. To employ the
method all the quantities in �Hrep�n�r�� must be dimension-
less. Since the integral over r has the dimensions of volume,
we move to a discrete summation over all points in space:

�
a

L

dx�
a

L

dy�
a

L

dz = a3 �
points r

.

The limits of the r integration are L, the size of the system,
and the short-distance cutoff a—the nematic coherence
length, below which the continuum representation is no
longer applicable. The �a ,b� replica coupling term then be-
comes

exp��	a3�
r

�na · nb�2	
=� d�ab exp��

r
�−

�ab
2

4	̃
+ �ab�na · nb�	� , �9�

which involves the dimensionless constant 	̃=�	a3. It is
important to clarify the meaning of the �ab

2 term in Eq. �9�: it
is the square of the value �ab rather than an element of the
product of two matrices. Furthermore, from now on we shall
use a mean-field approximation, where it is assumed that �ab
has no r dependance. This is an important limitation, but we
believe it is reasonable as we are looking for homogeneous
ordering in the system. Summation over r of the �ab

2 term
yields N�ab

2 / �4	�, where N=V /a3 is the number of “discrete
spacial points” and V=L3 is the system’s volume.

Moving to the corresponding discrete Fourier space, the
effective replica Hamiltonian includes both auxiliary fields:

�Heff�n�q�� = �
a,b
�− i��ab + N

�ab
2

4	̃

+ �
q
�� K̃q2

2
+ i���ab − �ab	�na · nb�� ,

�10�

with the dimensionless elasticity constant K̃=�Ka3. The dis-
crete sum over q is related to the integral via �q=L3� d3q

�2��3 .

As mentioned above, the conversion from the integral to the
discrete sum is essential so that all the quantities in Heff �such
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as 	̃, �, �ab, and K̃q2� remain dimensionless and the loga-
rithm of their sum can be evaluated correctly.

To be able to deduce the disorder energy as a function of

the order parameter, we make explicit the dependence of 	̃

and K̃ on the magnitude of the order parameter Q:

	̃ = gQ2, with g =
����2�0a3

15

K̃ = �a3Q2, �11�

where 
kBT /a is the Frank elastic constant deep inside the

nematic phase. It is worth noting that 	̃ is always signifi-
cantly smaller than one. The distance between crosslinks, dc,
which can be deduced from the crosslink density �0�dc

−3, is
found around 7–10 nm in nematic elastomers �10�. A typical
coherence length for nematics is a
5 nm, hence �a /dc�3

�0.4 or less. The coupling of disorder to the nematic direc-
tor is deduced from the size of the domains in Ref. �10� and
is found to be ��0.4 kBT. Therefore this crude estimate
gives g�4�10−3 for the nematic elastomers studied in the
literature.

B. Replica symmetry case

To be able to advance in the calculation, a matrix form of
the auxiliary field �ab has to be postulated. A reasonable
starting point is to assume that it has the simplest possible
form, where its elements have a constant value independent
of a and b:

�ab = ��1ab − �ab� , �12�

where 1ab is the matrix with all its elements equal to one and
�ab is the identity matrix. This scheme is frequently encoun-
tered in the literature �36� and is called the “replica symme-
try” limit. It is important to clarify that we are free to choose
any form we like for �ab, and that later we will come back to
this choice and check whether it is appropriate or not, in Sec.
IV. There is an important reason why the diagonal elements
of the auxiliary field �ab are chosen to be zero in Eq. �12�.
Had �ab=�1ab been our choice, then the summation over a
and b of �ab

2 would have given m2�. The quadratic depen-
dence on m would have meant that, after differentiating with
respect to m and setting m=0, this term would be equal to
zero. Clearly this is not acceptable since the introduction of
the auxiliary field in Eq. �9� requires a nonzero �ab

2 quadratic
term.

Substituting the replica-symmetric ansatz into the effec-
tive Hamiltonian of Eq. �10�, we find:

�Heff = �
a,b
�− i��ab + N

�2

4	̃
�1ab − �ab� +

1

2�
q

Gab
−1�na · nb�� ,

�13�

where the propagator of the a−b replica coupling is given
by:

Gab
−1 = �K̃q2 + 2i� + 2���ab − 2�1ab. �14�

A consequence of replica symmetry is that Gab
−1 only involves

matrices �ab and 1ab, and as a result its logarithm is easily
obtained:

log Gab
−1 = log�K̃q2 + 2i� + 2���ab

+
1

m
log�1 −

2�m

K̃q2 + 2i� + 2�
�1ab. �15�

The path integral over configurations na with the statistical
weight determined by the effective Hamiltonian �13� is
Gaussian and gives �Det G−1�−1/2=exp�− 1

2 tr log G−1� for
each of the three vector components of n. As a result the
disorder free energy is given by:

�Fd = −
1

2

�

�m
� d�� d� exp�−

N�2

4	̃
�m2 − m� + i�m

+
3

2�
q

tr log Gab
−1�

m→0

�16�

from the three �identical� path integrals for the components
of n.

C. Disorder free energy

The aim of this section is to determine the particular val-
ues of the auxiliary fields ��ab

* and �*� that make the disorder
energy of Eq. �16� a minimum. To treat the problem properly,
one would have to evaluate the integrals over �ab and �,
which is analytically challenging. The standard way to by-
pass this difficulty, is to employ the saddle-point approxima-
tion based on the simple observation that the exponentially
most significant contribution in Eq. �16� will occur when the
exponent is a maximum. Therefore

�Fd�K,	� � −
1

2

�

�m
exp�min

�,i�
�−

3

2�
q

tr log Gab
−1 + im�

− �N�2

4	̃
�m2 − m�	��

m→0

, �17�

where min�,i��· · � represents the minimum of a function with
respect to variations in � and i�. After substituting the trace
of the logarithm from Eq. �15�, we differentiate with respect
to m and then set m equal to zero. The disorder energy then
takes the form:

�Fd � min
�,i�
�− i� −

N�2

4	̃
+

3

2�
q
�log�K̃q2 + 2i� + 2��

−
2�

K̃q2 + 2i� + 2�
	� , �18�

and we are left with the task of finding the stationary point
�i�* ,�*�. From now on we move to the continuum limit of
space, where the discrete sum is replaced by �q

→V� 4�q2

�2��3 dq and the coherence length a is taken to zero.
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1. Optimal i� in the absence of disorder

The auxiliary field � ensures that the nematic director is a
unit vector. This constraint should of course be enforced
whether the disorder is present or not. In fact, there is no
physical reason why the inclusion of disorder should signifi-
cantly alter this constraint. Hence, as a first approximation,
we look for the optimum i�* when there is no disorder in the
system. Setting both 	 and � equal zero in the Eq. �18� and
differentiating with respect to i� we obtain:

�Fd

�i�
= 0 ⇒ 1 =

3V

2�2� qmax

K̃
−

�2i�

K̃3/2
tan−1�qmax� K̃

2i�
�	 .

�19�

In the continuous limit of qmax→
 the arctangent is equal to
� /2. This equation can be rewritten as

�2i� =
4�K̃3/2

3V �− 1 +
3qmaxV

2�2K̃
� . �20�

Clearly the −1 term is negligible compared to �qmaxV / K̃�,
and can be therefore neglected. Another factor that supports
this omission is that we want to examine what happens close
to the phase transition, where Q→0. In this limit, the elastic

constant is known to vanish ��Q2� and the term with K̃−1

dominates in the bracket.
Assuming that the inclusion of disorder has only a minor

effect on �, the value we will use from now on is:

i�* =
2K̃qmax

2

�2 , �21�

which tends to infinity in the continuum limit of space. It is
interesting to note that very close to the transition the con-
straint relaxes since �→0. This is not surprising since the
meaning of the director itself becomes ill-defined as we ap-
proach the transition point.

The full calculation to obtain �*��� in a system with dis-
order is possible. However, using a disorder-dependent �*���
in Eq. �18� makes it analytically impossible to solve
�Fd /��=0 and determine the optimum �*. Even a perturba-
tive approach: �*���=��=0

* + “small correction” does not
help matters. To overcome this difficulty the ��* ,�*� saddle
point should be found numerically, searching for a global
energy minimum in the Q−� space. The important drawback
of the latter is that we will then be unable to determine the
analytical form of �*�Q� and therefore the final Fd�Q� cor-
rection to the Landau free energy of the phase transition.

2. Optimal � for weak disorder

We proceed to determine the value of the auxiliary field
�* that minimizes the energy in the replica symmetric ap-
proximation. Differentiating the right-hand side of Eq. �18�
and demanding it to be zero we find:

�*N

2	̃
=

3V

�2 � q2

�K̃q2 + 2i�* + 2�*�2
dq .

Integration over momentum space gives the stationary con-
dition on the auxiliary field:

�*N

2	̃
=

3V

�2�−
qmax

2K̃�K̃qmax
2 + 2i�* + 2�*�

+
1

�2K̃�3/2�i�* + �*
tan−1�qmax� K

2i�* + 2�*�	 .

�22�

In the continuous limit of qmax=2� /a→
 the first term van-
ishes and the arctangent is equal to � /2. Equation �22� has
only one real solution. Unfortunately, its full expression is
too long and cumbersome to appear here explicitly; instead
we demonstrate its behavior in two limits. Expanded in pow-

ers of 	̃�1 �weak disorder� it takes the form

�*�	� =
3V

N�2K̃�3/2��i�*
	̃ + O�	2� . �23�

It is a reassuring property that �* vanishes as 	→0.
Critical to our work is the behavior of �* as the order

parameter Q tends to zero. Both 	 �from its definition� and K
�for small Q� are quadratic functions of Q. Therefore the
leading term in the series expansion of small Q is

�*�Q� =
�3V�2/3

2�2/3N2/3

	̃2/3

K̃
+ O�Q4/3� . �24�

The scaling �*�Q−2/3 is thus obtained, showing that �* di-
verges as the transition is approached, that is, even a weak
disorder becomes relevant near the Q→0 point.

3. Final disorder free energy

To find the final disorder energy the values of fields �*

and �* are put back in Eq. �18�. Performing the q integration
in the continuum limit we obtain:

Fd = − i�* −
N�*

4	̃
+

V

12�2�−
6qmax��* − 2i�*�

K̃

+
3�2���2 − i�*�* + 2�*2�

K̃�i�* + �* 	 . �25�

The energy we are interested in arises from disorder and we
can safely ignore terms that are still present when �*=	=0.
At diminishing order parameter, the leading term of Eq. �25�
takes the form:

Fd =
V��*�3/2

2�2�K̃3/2
�

3V2	̃

8�2K̃3N
� Q−4, �26�

which clearly diverges as Q→0. This divergence of the dis-
order free energy implies that the isotropic phase can never
be reached and, as we shall see in greater detail in Sec. V.
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This in turn leads to the rounding of the nematic-isotropic
phase transition. Before all this is discussed, we examine if
the replica-symmetric form of �ab in Eq. �12� was an appro-
priate choice, which is far from obvious.

IV. STABILITY OF REPLICA SYMMETRY

A. The Hessian

A necessary condition for the replica-symmetric solution
to be applicable is that the disorder energy is stable for in-
finitesimal variations of that solution. The auxiliary field �*

gives an energy extremum; whether this extremum is a maxi-
mum or a minimum is determined by a stability analysis
following the work of de Almeida and Thouless in spin
glasses �37�. We start by allowing the matrix of the auxiliary
field �ab to deviate from its replica-symmetric form:

�ab = �*�1ab − �ab� + �ab, �27�

with �ab the arbitrary infinitesimal deviation from replica
symmetry. The disorder free energy will be expanded to sec-
ond order in �:

Fd��ab� = FRS +
1

2 �
abcd

Had,bc�ab�cd, �28�

where FRS represents the energy of the replica-symmetric
case ��ab=0�, given by Eq. �25�. The second-order term in
�ab involves the fourth rank tensor of coefficients Hadbc,
which is called the Hessian. It plays an important role in this
analysis, because the replica-symmetric solution is only
stable as long as Hadbc is positive definite, or equivalently
only as long as its eigenvalues are nonnegative. Of course
there is no linear term in �ab because its coefficient is given
by the right-hand side of Eq. �22� and is therefore equal to
zero.

We proceed to find the Hessian of this model. Expanding
the first term of the disorder energy in powers of �ab gives:

N

4	̃
�ab

2 =
N

4	̃
��ab

rs 2 + 2�ab
rs �ab + �ab�ab� , �29�

where �ab
rs =�*�1ab−�ab�. Hence the contribution to the Hes-

sian from this term is �N /2	̃��ad�bc.
The other contribution comes from the trace of the loga-

rithm. The propagator of Eq. �14� can be written as Gab
−1

= �K̃q2+2i���ab−2�ab, therefore allowing �ab to vary gives
the following form to the propagator:

Gab
−1 = Gab

rs −1 − 2�ab, �30�

where the replica-symmetric Gab
rs −1 is given in Eq. �14�.

Therefore,

tr log Gab
−1 = tr log�Gac

rs −1��cb − 2Gcd
rs �db�� , �31�

where summation over the dummy indexes c ,d is implicit
and

Gab
rs =

1

K̃q2 + 2i�* + 2�*
�ab +

2�*

�K̃q2 + 2i�* + 2�*�2
1ab

is the inverse of Eq. �14�. In the case of two commuting
matrices: log�A ·B�=log�A�+log�B�. It turns out that the
eigenvectors of the Hessian ��ab� indeed commute with ma-
trix Gab. This is largely because the latter is a combination of
two very simple matrices 1ab and �ab. Breaking up the prod-
uct under the logarithm:

log G−1 = log Grs−1 + log�� − 2Grs · ��

and expanding the second term in a Taylor series, we obtain:

tr log Gab
−1 = tr log Gab

rs −1 − 2�
ab

Gba
rs �ab − 2 �

abcd

Gda
rs �abGbc

rs �cd.

�32�

There are three identical traces to be considered, one for each
component of the nematic director. Taking into account the
1/2 factor in front of the Hessian, this contribution is
−6�qGda

rs Gbc
rs and the overall Hessian takes the form:

Hadbc = � N

2	̃
�ad�bc − 6Gda

rs Gbc
rs� . �33�

This Hessian has three distinct values of its many matrix
elements, depending on how its many indexes are common
to the pairs �a ,d� and �b ,c�. These values are Haa,bb= P,
Haa,bc=Had,bb=Q, and Had,bc=R.

B. Hessian eigenvalues

The eigenvalues of such a four-rank tensor have been
computed by de Almeida and Thouless in their classical
work on replica-symmetry breaking in spin glasses �37�. For
m→0 only two distinct eigenvalues exist:

�1 = P − 4Q + 3R and �3 = P − 2Q + R �34�

and it is straightforward to obtain them by inserting the ap-
propriate forms of Grs into the expression of the Hessian of
Eq. �33�. The first eigenvalue,

�1 =
N

2	̃
− 6V� 4�q2

�2��3� 1

�K̃q2 + 2i� + 2��2

−
4�

�K̃q2 + 2i� + 2��3	dq

=
N

2	̃
−

3�2i� + ��V

8�2�K̃3/2�i� + ��3/2
, �35�

is degenerate and corresponds to two eigenvectors �1 and �2.
The first, �1, is symmetric under interchange of indexes
��ab=� for all a ,b� and determines whether the replica-
symmetric fixed point of Eq. �22� is stable or not. In other
words, if �1�0 the replica-symmetric solution corresponds
to an energy maximum and has no physical relevance.

The remaining two eigenvectors check the general stabil-
ity of the replica-symmetric scheme. Contrary to �1, the sec-
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ond eigenvector �2, corresponding to the degenerate �1, is
symmetric under interchange of all but one index ��ab=� for
a or b � c and �ab=� otherwise�. This eigenvector is not
symmetric and as a result a negative �1 also means that
replica symmetry must be broken to determine the correct
�ab. The second eigenvalue is nondegenerate and is given by:

�3 =
N

2	̃
− 6V� 4�q2

�2��3

1

�K̃q2 + 2i� + 2��2
dq

=
N

2	̃
−

3V

4�2�K̃3/2�i� + ��1/2
. �36�

and its corresponding eigenvector, called �3, also does not
have a symmetric form ��ab=� for a=c and b=d, �ab=� for
a=c or a=d and b�c ,d, �ab=� otherwise�. Similarly to the
previous case, if �3�0 then the replica-symmetric solution
breaks down and different forms of �ab must be sought.

Accordingly, a sufficient condition for the replica-
symmetric solution to be stable is that all the eigenvalues of
the Hessian remain positive. Both �1 and �3 show a similar
behavior as functions of disorder strength �, which was de-
fined in the text above Eq. �1�, and the order parameter Q.
Substituting the optimal �* and �*, we find that when Q does
not tend to zero, both eigenvalues remain positive, especially

for weak disorder, 	̃�1. As the continuous phase transition
is approached and the order parameter diminishes, the three
parameters appearing in Eq. �36� become simple functions of
Q: 	�Q2, K�Q2, and �*�Q−2/3. Hence, the eigenvalues
scale as Q−2−Q−8/9 and, therefore, become negative at some
point Q�1. This means that for Q→0 the replica-
symmetric solution of the auxiliary field Eq. �24� and the
resulting expression for the disorder energy, Eq. �26�, corre-
spond to an energy maximum and should not be used.

To find the exact point at which replica symmetry be-
comes unstable we note that it is the second �nondegenerate�
eigenvalue, �3 that becomes negative first as Q→0. Substi-
tuting the parameters 	, K, and �* we find this crossover
value for stability:

Qstab =
3g

4�2���a�3/2
, �37�

where the relation V /N=a3 has been used, with a the short-
length cutoff. Bearing in mind that g�a3 and that �1/a we
find Qstab�a3. To be consistent with previous calculations
the continuum limit of space is employed and a→0. There-
fore the threshold value below which replica symmetry
breaks tends to zero and the Eq. �24� is always valid in the
continuum limit. Another way to see this is by examining the
explicit dependance of �3 on the cutoff length scale a. The

first term �N / 	̃� scales as a−6 whereas the second term scales
as −a−5. Therefore when a is taken to zero the first term
dominates and the eigenvalue remains positive. To complete
the stability analysis, we note that the other eigenvalue also
becomes negative for smaller values of Q when Q
�Qstab /2, but this is irrelevant since the instability of �3
occurs first.

V. PHASE TRANSITION ANALYSIS

The aim of this paper is to discuss how quenched orien-
tational disorder affects the phase transition of nematic sys-
tems. The total free energy density is a combination of the
Landau-de Gennes expansion of the order parameter plus the
disorder part �Fd /V� obtained in Eq. �25�. To get the total
energy as an expansion of the order parameter only the lead-
ing order contribution of Fd in Eq. �26� is considered:

F =
A0

2
�T − T*�Q2 −

B

3
Q3 +

C

4
Q4 +

D

4
Q−4, �38�

where the constant D is found from Eqs. �11� and �26�,

D =
3g

2�2��a2�3kBT �39�

and A, B, C, and T* are the usual Landau-de Gennes param-
eters. One may note the explicit dependence of Eq. �39� on
the short-length cutoff a and be concerned about the sustain-
ability of the continuum limit a→0. In fact, because g�a3

and ��1/a, the powers of a cancel and the free energy
does not depend on this cutoff parameter, which is a reassur-
ing test of consistency of our theory.

The easiest way to illustrate the consequence of the free
energy renormalization is to plot the equilibrium values of
the order parameter Q. The values chosen for the Landau
phenomenological constants are: A0�5.0�103 Jm−3K−1, B
�3.3�105 Jm−3, and C�1.0�106 Jm−3. A detailed de-
scription on how they are obtained by analyzing the experi-
mental data of Ref. �22� is given in the Appendix. We con-
sider these values to be indicative only since different
nematic materials will certainly have large variations in these
values. Plotting the equilibrium order parameter against re-
duced temperature, Fig. 2, we can compare Q�T� for the
disorder strength increasing from g=0 in �a� up to g=10−4 in
�d�. As mentioned in Sec. III a typical polydomain elastomer
should have g�4�10−3 and therefore the model predicts a
supercritical behavior in agreement with many experiments.

FIG. 2. �Color online� The equilibrium order parameter Q as a
function of reduced temperature t=T /T* for a range of different
disorder strength g. �a� is the first order transition for a system with
no disorder �b� is a subcritical system, �c� is a critical system, �d� is
a supercritical system. As the disorder strength increases the discon-
tinuous jump decreases and eventually disappears.
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Note that in contrast to this result, the quenched orientational
disorder was shown not to alter the continuous nematic phase
transition in thin films, whose director is confined in the XY
plane �38�.

The inclusion of disorder has a profound effect on the
phase behavior of three-dimensional �3D� systems whose
pure versions undergo a first-order phase transition. The dis-
continuous jump of the order parameter at the nematic tran-
sition becomes smaller as the strength of the disorder g in-
creases and eventually disappears altogether above a critical
value making the phase transition continuous. The change in
behavior is explained by the simple fact that the energy terms
arising from the disorder scale as negative powers of Q. As a
direct result, the energy of the system increases as the tran-
sition approaches and the zero order parameter phase is
never reached. To see exactly how this happens consider
plots of F�Q� of a subcritical and a supercritical system.

For a subcritical system, where disorder is weak, the jump
in Q�T� is still present, albeit smaller than in the original
transition of the pure system. Because parameter g is small,
the disorder part of the energy becomes significant only for
small Q, where it diverges. The appearance of the jump has
the same origins as in the classical Landau-de Gennes theory.
Figure 3 shows plots of the energy density against order
parameter for four different temperatures around TNI. At the
lowest temperature �T1� the single minimum determines the
equilibrium value of Q. As the temperature increases the
high-Q minimum moves to a slightly smaller value of Q
and—more importantly—another “low-Q” minimum appears
as a result of disorder. At T2 the high Q is still the global
minimum, but at the critical temperature �T3� the two minima
have the same energy value. This means that two distinct
phases, one with Q�0.23 and the other Q�0.05, coexist.
Once this temperature is passed �T4� the low-Q minimum
determines the system’s order parameter. The crucial differ-
ence between these plots and the classical Landau-de Gennes
theory is that the low-Q minimum in the latter is always
placed at Q=0. Since the disorder energy diverges at zero Q,
this minimum is pushed at positive values of Q in systems
with quenched disorder.

The dotted and dashed lines show the Landau and the
disorder energy for the same temperature T3, respectively.
Around the high-Q minimum the dotted line has the same
shape as the actual energy; apart from a constant shift to
lower energy they are exactly equal. Therefore this minimum
is a result of the competition of the −BQ3 and CQ4 energy
terms of the Landau expansion, which dominate at large Q.
The position of the low-Q minimum is influenced by disor-
der. This minimum is a balance of the divergent Fd term and
AQ2. For temperatures well above TNI the minimum is lo-
cated at very small order parameter and the only relevant
terms of Eq. �38� are DQ−4 and AQ2.

In a supercritical system disorder is stronger �large g� and
therefore its effect on the energy is more prominent. As a
result the effect of Fd is relevant for all the values of Q, not
just in the small order parameter region as in the previous
case. Figure 4 shows the relevant energy plots. Crucially
there is only one minimum at any given temperature. Its
position shifts to smaller order parameter as temperature in-
creases, but the phase transition is continuous. In comparison
with Fig. 3, we can say that the low-Q minimum has “broad-
ened” and “absorbed” the high-Q minimum.

Another difference with the small g case is that, because
Fd has larger magnitude, the low order AQ2 term of the Lan-
dau expansion does not influence the position of the mini-
mum. The dotted lines in Fig. 4 are drawn for the same
temperature as in the previous case of Fig. 3, but now this
temperature is labeled as T1. In this supercritical system the
energy minimum occurs at approximately the same value of
order parameter as the high-Q minimum of the Landau de
Gennes expansion �thin-dotted line�. In a pure system this
would be a metastable state because there would exist a glo-
bal minimum at Q=0.

The natural question to ask next is what is the critical
point at which the jump in Q�T� disappears completely? At
this point the free energy must have the merging of all its
minima and maxima. Solving for the first, second, and third
derivatives being zero provides three equations for the un-
known critical parameters gc, Tc, and Qc and the critical
point is then given by:

FIG. 3. �Color online� Free energy against order parameter plots
for a subcritical system for a range of temperatures, T1�T2�T3

�T4. The dotted and dashed lines show, respectively the Landau
and disorder energies for T=T3. They illustrate that the high-Q
minimum is a product of the Landau energy exclusively, whereas
the low-Q minimum arises from competition of the AQ2 Landau
term and the disorder energy.

FIG. 4. �Color online� Energy against order parameter plots of a
supercritical system for a range of temperatures, T1�T2�T3, all
larger than TNI. The dotted and dashed lines show the Landau and
disorder energies for T1, respectively. Since the disorder energy
diverges the AQ2 Landau term is no longer significant.
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�gc,Qc� = �2�2711B12��a�3

91612C11 ,
7B

16C
� . �40�

It is worth comparing this with the classical case of an ap-
plied field, which adds a −fQ term in the Landau expansion,
where the critical Q is slightly smaller and equal to B /3C.

In the analysis of the replica-symmetry stability in Sec. IV
we found that the above description of nematic systems
breaks down for small order parameter when Q�Qstab, see
Eq. �37�. The threshold value of Qstab is proportional to the
cube of the cutoff length a. In order to be consistent with the
line adopted in previous calculations, the continuum limit of
space was employed and a was taken to zero. Hence Qstab
was also taken to be zero. However, in reality the length
scale a is in fact the nematic coherence length, because be-
low this size we cannot write Frank elasticity and there is no
meaning to order parameter Q, or director n. Keeping a non-
zero, and assigning it the value of 5 nm which is usually
associated with liquid crystals, makes Qstab also finite. Nev-
ertheless substituting the value of g�3�10−3 and 
�kBT /a gives Qstab�2�10−4. This is an extremely small
value for the order parameter and, as we see from Fig. 2, it
would only be acquired at temperatures well above the ex-
perimental range. Hence, even if a�0, the window of
replica-symmetry stability is wide enough to describe realis-
tic nematic systems.

VI. SUMMARY

This paper examines how the inclusion of randomly
quenched orientational disorder leads to the rounding of the
nematic-isotropic phase transition in three dimensions. The
coupling between impurities and the local order parameter
pins some mesogenic molecules and does not allow the
sample to have a uniform director field n�r�. After quenched
disorder has been averaged over using the replica method, a
replica-symmetric auxiliary field is used to obtain the free
energy arising from disorder. The disorder energy adds a
�Q−4 term to the Landau-de Gennes expansion which di-
verges for diminishing order parameter Q. As a result the
isotropic phase is never reached and, for sufficiently strong
disorder, the phase transition becomes continuous. This is in
accordance with many experiments on nematic elastomers
that also show a smooth transition rather than a discontinu-
ous one as predicted by the classical Landau-de Gennes
theory. An earlier study on XY nematics, whose director is
confined to a plane, showed that the quenched disorder does
not affect their continuous phase behavior �38�.

A stability analysis shows that the replica-symmetric so-
lution we have employed does fail at small values of the
order parameter, at Q�Qstab. However, for realistic values
of physical parameters we estimate the order of Qstab
�10−4 in nematic elastomers. A supercritical system acquires
such low values of Q at temperatures well above the elas-
tomers melting point and therefore the window of replica
symmetry stability adequately describes the 3D nematic
system.

ACKNOWLEDGMENTS

We would like to thank Isaac Pérez Castillo, David Sher-
rington, Paolo Biscari, and Raphael Blumenfeld for their
feedback. This work has been supported by the Leventis
Foundation, the Cambridge European Trust, and the EPSRC
TCM/C3 Portfolio Grants.

APPENDIX

In order to determine the three phenomenological param-
eters A0, B, and C of the Landau-de Gennes theory, defined
in Eq. �38�, we need three independent measurements. These
are provided by a NMR experiment measuring the order pa-
rameter as a function of temperature of a polymer melt and
its corresponding crosslinked network �a polydomain nem-
atic elastomer� �22�. As expected from the Landau-de
Gennes theory, the melt shows a first order transition with
the discontinuous jump in order parameter being approxi-
mately �Q�0.22, which is smaller than 0.4, the value usu-
ally associated with ordinary liquid crystals �39�. The theo-
retical prediction gives this jump to be equal to �Q
=2B /3C �14� and substituting the experimental measurement
we find B�0.33C. The second measurement is the width of
the temperature hysteresis which is �T�5 K in the polymer
melt. Theory predicts �T=2B2 /9A0C. Combining this with
B�C /3 we find B=67A0 1 K and C=200A0 1 K. To get a
value of A0 a third measurement is required.

A striking difference between the two Q�T� plots, for a
nematic polymer melt and its crosslinked elastomer version,
is that crosslinking has reduced the overall order at tempera-
tures below TNI. For elastomers crosslinked in the isotropic
phase, the energy addition arising from nematic rubber elas-
ticity adds a fourth order term in the Landau expansion �40�:

3

4
��4Q4,

where � is the rubber modulus and � accounts for the mi-
croscopic details of an elastomer. For a freely joined polymer
�=3 �11�, but side-chained polymers have � ranging be-
tween −0.5 and 0 �41�. Let us take an intermediate case
where �=1. When this term is added to the Landau-de
Gennes expansion, the fourth-order coefficient �which is C /4
for the polymer melt� now becomes larger C

4 �1+3 ��4 /C�.
Hence the transition temperature, given by TNI=T*

+2B2 /3A0C2, decreases since the renormalized C increases.
The shift in this transition temperature between the melt and
the corresponding elastomer is:

�TNI = −
2B2��3

3A0C2 . �A1�

and it provides the third relation that allows one to determine
A0. An estimate of �TNI is possible in Ref. �22�: TNI is easily
identified in the polymer melt, but it is not clear what it
means in the disordered nematic elastomer with a continuous
transition. It can be loosely defined as the temperature where
Q=�Q=0.22. This then makes �TNI�15 °C. Substituting
this back to Eq. �A1� with �=1, we obtain A0� �

200K . A
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typical nematic elastomer has elastic modulus of the order of
106 Pa. Putting everything together, the phenomenological
constants of a nematic elastomer are:

A0 � 5.0 � 103 Jm−3K−1, B � 3.3 � 105 Jm−3,

and

C � 1.0 � 106 Jm−3.

These values are crude estimations, only given here to illus-
trate the effect of disorder in our model. However, it is com-
forting that, although obtained from a different set of experi-
mental measurements, these values are quite close to the
ones reported in the literature �11�.
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